Geldanamycin inhibits hemorrhage-induced increases in caspase-3 activity: role of inducible nitric oxide synthase.
نویسندگان
چکیده
Hemorrhage has been shown to increase inducible nitric oxide synthase (iNOS) and deplete ATP levels in tissues and geldanamycin limits both processes. Moreover, it is evident that inhibition of iNOS reduces caspase-3 and increases survival. Thus we sought to identify the molecular events responsible for the beneficial effect of geldanamycin. Hemorrhage in mice significantly increased caspase-3 activity and protein while treatment with geldanamycin significantly limited these increases. Similarly, geldanamycin inhibited increases in proteins forming the apoptosome (a complex of caspase-9, cytochrome c, and Apaf-1). Modulation of the expression of iNOS by iNOS gene transfection or siRNA treatment demonstrated that the level of iNOS correlates with caspase-3 activity. Our data indicate that geldanamycin limits caspase-3 expression and protects from organ injury by suppressing iNOS expression and apoptosome formation. Geldanamycin, therefore, may prove useful as an adjuvant in fluids used to treat patients suffering blood loss.
منابع مشابه
Comparison of inducible nitric oxide synthase activity in pancreatic islets of young and aged rats
Objective(s):Some pathologic situations such as diabetes and metabolic syndrome are associated with alternation in nitric oxide level. Incidence of these condition increases with aging. On the other hand, insulin secretion is modulated by nitric oxide, and nitric oxide synthase (NOS) activity is also altered in diabetes. In this study, modification in the enzyme activity associated with aging a...
متن کاملGeldanamycin treatment inhibits hemorrhage-induced increases in KLF6 and iNOS expression in unresuscitated mouse organs: role of inducible HSP70.
The aim of this study was to determine whether hemorrhage affects the levels of a variety of stress-related proteins and whether changes can be inhibited by drugs reported to provide protection from ischemia and reperfusion injury. Male Swiss Webster mice were subjected to a 40% hemorrhage without resuscitation. Western blot analysis indicated that c-Jun (an AP-1 protein), Kruppel-like factor 6...
متن کاملAndrostenediol inhibits the trauma-hemorrhage-induced increase in caspase-3 by downregulating the inducible nitric oxide synthase pathway.
Soft tissue trauma and hemorrhage (T-H) diminishes various aspects of liver function, while it increases hepatic nitrate/nitrite, inducible nitric oxide synthase (iNOS), and endothelin-1 levels. Treatment with androstenediol (AED) inhibits the T-H-induced alterations of the above parameters. We sought to identify the molecular events underlying the beneficial effect of AED. Exposure of rats to ...
متن کاملHeat Shock Protein-70 Inducers and iNOS Inhibitors as Therapeutics to Ameliorate Hemorrhagic Shock
Hemorrhagic shock is the principal cause of death of soldiers in the battlefield. Although the underlying mechanisms are still not fully understood, it has been shown that nitric oxide (NO) overproduction and inducible nitric oxide synthase (iNOS) overexpression play important roles in producing injury caused by hemorrhagic shock. In addition, polymorphonuclear neutrophils (PMN) infiltrate inju...
متن کاملEXPRESSION OF INDUCIBLE NITRIC OXIDE SYNTHASE GENE (iNOS) STIMULATED BY HYDROGEN PEROXIDE IN HUMAN ENDOTHELIAL CELLS
Inducible nitric oxide synthase (iNOS) gene expresses a calcium calmudolin-independent enzyme which can catalyse NO production from L-arginine. The induction of iNOS activity has been demonstrated in a wide variety of cell types under stimulation with cytokines and lipopoly saccharide (LPS). Previous studies indicated that all nitric oxide synthases (NOS) activated in human umbilical vein endot...
متن کاملذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید
ثبت ناماگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید
ورودعنوان ژورنال:
- Journal of applied physiology
دوره 103 3 شماره
صفحات -
تاریخ انتشار 2007